
Java LibreOffice Programming. Chapter 26. Search Draft #2 (20th March 2017)

 1 © Andrew Davison 2017

Part 4: Calc Modules

Chapter 26. Search and Replace

The increaseGarlicCost() method in GarlicSecrets.java

(Chapter 23, section 3) illustrates how to use loops and if-

tests to search for and replace data. Another approach is to

employ the XSearchable and XReplaceable interfaces, as

in the ReplaceAll.java example shown below:

// global array

private static final String[] animals =

 { "ass", "cat", "cow", "cub", "doe", "dog", "elk",

 "ewe", "fox", "gnu", "hog", "kid", "kit", "man",

 "orc", "pig", "pup", "ram", "rat", "roe", "sow", "yak" };

public static void main(String args[])

{

 // read search animal from command line

 if (args.length != 1) {

 System.out.println("Usage: run ReplaceAll <animal>");

 return;

 }

 XComponentLoader loader = Lo.loadOffice();

 XSpreadsheetDocument doc = Calc.createDoc(loader);

 if (doc == null) {

 System.out.println("Document creation failed");

 Lo.closeOffice();

 return;

 }

 GUI.setVisible(doc, true);

 XSpreadsheet sheet = Calc.getSheet(doc, 0);

 // randomly fill a grid of 6 x 15 cells with animal names

 Random rand = new Random();

 for (int i=0; i < 6; i++)

 for (int j=0; j < 15; j++)

 Calc.setVal(sheet, i, j,

 animals[rand.nextInt(animals.length)]);

 // create a cell range that covers the animals grid

 XCellRange cellRange = Calc.getCellRange(sheet, 0, 0, 5, 14);

 // colStart, rowStart, colEnd, rowEnd

 // two ways to search for an animal

 // searchIter(sheet, cellRange, args[0]);

 searchAll(sheet, cellRange, args[0]);

 /* replace all occurrences of the args[0] animal

 with a randonly chosen one */

 replaceAll(cellRange, args[0],

 animals[rand.nextInt(animals.length)]);

 Lo.saveDoc(doc, "replace.ods");

 Lo.waitEnter();

Topics: XSearchable;

XReplaceable;

SearchDescriptor;

ReplaceDescriptor;

Searching Iteratively;

Searching For All

Matches; Replacing All

Matches

Example folders: "Calc

Tests" and "Utils"

Java LibreOffice Programming. Chapter 26. Search Draft #2 (20th March 2017)

 2 © Andrew Davison 2017

 Lo.closeDoc(doc);

 Lo.closeOffice();

} // end of main()

A blank sheet is filled with a 15 x 6 grid of randomly chosen animal names, such as

the one shown in Figure 1.

Figure 1. A Grid Of Animals for Searching and Replacing.

The SheetCellRange supports the XReplaceable interface, which is a subclass of

XSearchable, as in Figure 2.

Figure 2. The XReplaceable and XSearchable Interfaces.

A cell range's XSearchable interface is accessed through casting:

XCellRange cellRange = //...

XSearchable srch = Lo.qi(XSearchable.class, cellRange);

The XReplaceable interface for the range is obtained in the same way:

XReplaceable repl = Lo.qi(XReplaceable.class, cellRange);

Java LibreOffice Programming. Chapter 26. Search Draft #2 (20th March 2017)

 3 © Andrew Davison 2017

XSearchable offers iterative searching using its findFirst() and findNext() methods,

which I'll demonstrate shortly in the searchIter() method in ReplaceAll.java.

XSearchable can also search for all matches at once with findAll(), which I employ in

ReplaceAll.java's searchAll(). Only one of these methods is needed by the program,

so the other is commented out in the main() function shown above.

XReplaceable only offers replaceAll() which searches for and replaces all of its

matches in a single call. It's utilized by ReplaceAll.java's replaceAll().

Before a search can begin, it's usually necessary to tweak the search properties, e.g. to

employ regular expressions, be case sensitive, or use search similarity. Similarity

allows a text match to be a certain number of characters different from the search text.

These search properties are stored in the SearchDescriptor service, which is accessed

by calling XSearchable.createSearchDescriptor(). For example:

// in searchIter() in ReplaceAll.java

 :

XSearchable srch = Lo.qi(XSearchable.class, cellRange);

XSearchDescriptor sd = srch.createSearchDescriptor();

sd.setPropertyValue("SearchWords", true);

 // only complete words will be found

sd.setPropertyValue("SearchRegularExpression", true); // use regexs

XSearchDescriptor is the interface for the SearchDescriptor service, as shown in

Figure 3.

Figure 3. The ReplaceDescriptor and SearchDescriptor Services.

Aside from being used to set search properties, XSearchDescriptor is also where the

search string is stored:

sd.setSearchString("dog"); // search for "dog"

If regular expressions have been enabled, then the search string can utilize them:

sd.setSearchString("[a-z]+");

 // search for a non-empty series of lower-case letters

The regular expression syntax is standard, and documented online at

https://help.libreoffice.org/Common/List_of_Regular_Expressions.

Java LibreOffice Programming. Chapter 26. Search Draft #2 (20th March 2017)

 4 © Andrew Davison 2017

1. Searching Iteratively

The searchIter() method in ReplaceAll.java is passed the cell range for the 15 x 6 grid

of animals, and creates a search based on finding complete words. It uses

XSearchable.findFirst() and XSearchable.findNext() to incrementally move through

the grid:

// in ReplaceAll.java

private static void searchIter(XSpreadsheet sheet,

 XCellRange cellRange, String srchStr)

{

 System.out.println("Searching for \"" + srchStr + "\"");

 try {

 XSearchable srch = Lo.qi(XSearchable.class, cellRange);

 // set up search string and properties

 XSearchDescriptor sd = srch.createSearchDescriptor();

 sd.setSearchString(srchStr);

 sd.setPropertyValue("SearchWords", true);

 // only complete words will be found

 // search iteratively

 XCellRange cr = Lo.qi(XCellRange.class, srch.findFirst(sd));

 int count = 0;

 while (cr != null) {

 highlightMatch(cr);

 System.out.println(" Match " + (count+1) + ": " +

 Calc.getRangeStr(cr));

 cr = Lo.qi(XCellRange.class, srch.findNext(cr, sd));

 count++;

 }

 }

 catch(Exception e)

 { System.out.println(e); }

} // end of searchIter()

private static void highlightMatch(XCellRange cr)

// highlight the matching of the cell range

{

 Props.setProperty(cr, "CharWeight",

 com.sun.star.awt.FontWeight.BOLD);

 Props.setProperty(cr, "CharColor", Calc.DARK_BLUE);

 Props.setProperty(cr, "CellBackColor", Calc.LIGHT_BLUE);

} // end of highlightMatch()

XSearchable.findNext() requires a reference to the previous match as its first input

argument, so it can resume the search after that match.

The Office documentation for XSearchable.findFirst() and XSearchable.findNext()

specify that they return an XInterface reference, which seems to be incorrect (use

lodoc XSearchable to look for yourself). In my code, the result had to be assigned

to an Object variable or a runtime type exception occurs.

Another surprise was when I listed the services supported by the references returned

by XSearchable.findFirst() and XSearchable.findNext() by calling

Info.showServices():

Java LibreOffice Programming. Chapter 26. Search Draft #2 (20th March 2017)

 5 © Andrew Davison 2017

Object oFirst = srch.findFirst(sd);

Info.showServices("Find First", oFirst);

As I'd expected, the main service supported by the findFirst() result is SheetCell. This

makes sense since the search is looking for a cell containing the search string. As a

consequence, the oFirst reference can be converted to XCell:

 XCell cr = Lo.qi(XCell.class, srch.findFirst(sd));

However, checking out XSearchable.findNext() in the same way showed an

occasional problem:

Object oNext = srch.findNext(oFirst , sd);

Info.showServices("Find Next", oNext);

The reference returned by findNext() usually supports the SheetCell service, but

sometimes represents SheetCellRange instead! When that occurs, code that attempts

to convert oNext to XCell will return null:

XCell cell = Lo.qi(XCell.class, srch.findNext(oFirst, sd));

My solution is shown in the searchIter() listing above – instead of converting the

XSearchable.findFirst() and XSearchable.findNext() results to XCell, they're changed

into XCellRange references, which always succeeds.

searchIter() calls highlightMatch() on each match so the user can see the results more

clearly, as in Figure 4.

Figure 4. The Results of searchIter() when Looking for "dog".

2. Searching For All Matches

The searchAll() method in ReplaceAll.java utilizes XSearchable.findAll() to return all

the search matches at once, in the form of an indexed container. Calc.findAll() adds

an extra conversion step, creating an array of XCellRange objects from the values in

the container:

Java LibreOffice Programming. Chapter 26. Search Draft #2 (20th March 2017)

 6 © Andrew Davison 2017

// in the Calc class

public static XCellRange[] findAll(XSearchable srch,

 XSearchDescriptor sd)

{

 XIndexAccess con = srch.findAll(sd);

 if (con == null) {

 System.out.println("Match result is null");

 return null;

 }

 if (con.getCount() == 0) {

 System.out.println("No matches found");

 return null;

 }

 // put container contents into an array

 XCellRange[] crs = new XCellRange[con.getCount()];

 for (int i=0; i < con.getCount(); i++) {

 try {

 crs[i] = Lo.qi(XCellRange.class, con.getByIndex(i));

 }

 catch(Exception e)

 { System.out.println("Could not access match index " + i); }

 }

 return crs;

} // end of findAll()

searchAll() iterates through the XCellRange array returned by Calc.findAll(),

highlighting each match in the same way as the searchIter() function:

// in ReplaceAll.java

private static void searchAll(XSpreadsheet sheet,

 XCellRange cellRange, String srchStr)

{

 System.out.println("Searching for all of \"" + srchStr + "\"");

 try {

 XSearchable srch = Lo.qi(XSearchable.class, cellRange);

 // set up search string and properties

 XSearchDescriptor sd = srch.createSearchDescriptor();

 sd.setSearchString(srchStr);

 sd.setPropertyValue("SearchWords", true);

 XCellRange[] matchCrs = Calc.findAll(srch, sd);

 if (matchCrs == null)

 return;

 System.out.println("Search text found " +

 matchCrs.length + " times");

 // highlight each match in the array

 for (int i=0; i < matchCrs.length; i++) {

 highlightMatch(matchCrs[i]);

 System.out.println(" Index " + i + ": " +

 Calc.getRangeStr(matchCrs[i]));

 }

 }

 catch(Exception e)

 { System.out.println(e); }

Java LibreOffice Programming. Chapter 26. Search Draft #2 (20th March 2017)

 7 © Andrew Davison 2017

} // end of searchAll()

3. Replacing All Matches

The XReplaceable interface only contains a replaceAll() method (see Figure 2), so

there's no way to implement an iterative replace function. In addition,

XReplaceable.replaceAll() returns a count of the number of changes, not a container

of the matched cells like XSearchable.findAll(). This means that its not possible to

code a replace-like version of my searchAll() method which highlights all the changed

cells.

The best that can be done is to execute two searches over the grid of animal names.

The first looks only for the search string so it can highlight the matching cells. The

second search calls XReplaceabl.replaceAll() to make the changes.

My replaceAll() method is:

// in ReplaceAll.java

private static void replaceAll(XCellRange cellRange,

 String srchStr, String replStr)

{

 System.out.println("Replacing \"" + srchStr +

 "\" with \"" + replStr + "\"");

 Lo.delay(2000); // wait a bit before search & replace

 try {

 XReplaceable repl = Lo.qi(XReplaceable.class, cellRange);

 // set up search and replace strings and properties

 XReplaceDescriptor rd = repl.createReplaceDescriptor();

 rd.setSearchString(srchStr);

 rd.setReplaceString(replStr);

 rd.setPropertyValue("SearchWords", true);

 // rd.setPropertyValue("SearchRegularExpression", true);

 int count = repl.replaceAll(rd);

 System.out.println("Search text replaced " +

 count + " times\n");

 }

 catch(Exception e)

 { System.out.println(e); }

} // end of replaceAll()

The coding style is similar to my searchAll() method from above. One difference is

that XReplaceDescriptor is used to setup the search and replacement strings.

One way of calling replaceAll() is to use regular expressions in the function:

replaceAll(cellRange, "[a-z]+",

 animals[rand.nextInt(animals.length)]);

The search string ("[a-z]+") will match every cell's text, and change all the animal

names to one chosen at random. Typical output is shown in Figure 5.

Java LibreOffice Programming. Chapter 26. Search Draft #2 (20th March 2017)

 8 © Andrew Davison 2017

Figure 5. All Animals Become One.

